Post-quantum Key Exchange from LWE

Jintai Ding, University of Cincinnati

WHEAT, 07.07.2016

Jintai Ding AKE from rLWE

▲ 同 ▶ → 三 ▶

Diffie-Hellman

The context of our work - PKC

- Diffie-Hellman's revolution idea Public key cryptography Symmetric systems versus Asymmetric systems
- The work of RSA the critical role of mathematics
- The Internet and the PKCs Internet can not work without PKCs.

Diffie-Hellman

The context of our work - PQC

- Shor's quantum algorithm
- Post-quantum cryptography Develop public key cryptosystems that could resist future quantum computer attacks

< A → <

Diffie-Hellman

The Preparation for the Future

• The first Quantum-Safe-Crypto Workshop

26 - 27 September, 2013

ETSI – the European Telecommunications Standards Institute at SOPHIA ANTIPOLIS, FRANCE

• The second Quantum-Safe-Crypto Workshop

6 - 2 October , 2014, Ottawa, Canada White paper

• The Quantum-Safe-Crypto Workshop at NIST: National Institute of Standard of Technology,

April 7-8, 2015, Washington DC

Motivation

Lattice-based Key Exchange The Provable Security Implementations

A slide of M. MOSCA

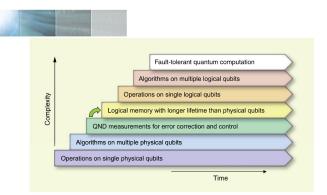


Fig. 1. Seven stages in the development of quantum information processing. Each advancement requires mastery of the preceding stages, but each also represents a continuing task that must be perfected in parallel with the others. Superconducting qubits are the only solid-state implementation at the third stage, and they now aim at reaching the fourth stage (green arrow). In the domain of atomic physics and quantum optics, the third stage had been previously attained by trapped ions and by Rydberg atoms. No implementation has yet reached the fourth stage, where a logical qubit can be stored, via error correction, for a time substantially longer than the decoherence time of its physical qubit components.

WE UNIVERSITY OF LINC Whether

Jintai Ding AKE from rLWE

12

Crumta Marka 21

Diffie-Hellman

A commercial for PQC from NSA

Defending Our Nation. Securing The Future.			
Informatio	n Assurance	Home > In Instion Assurance > Programs > NSA Suite B Cryptography	
About IA at N	SA	Cryptography Today	
IA Client and	Partner Support		
IA News		In the current global environment, rapid and secure information sharing is important to our Nation, its citizens and its interests. Strong cryptographic algorithms and secure pro	
IA Events		standards are vital tools that contribute to our national security and help address the	
IA Mitigation	Guidance	ubiquitous need for secure, interoperable communications.	
IA Academic	Dutreach		
IA Business a	nd Research	Currently, Suite B cryptographic algorithms are specified by the National Institute of Standa and Technology (NIST) and are used by NSA's Information Assurance Directorate in solutio	
* IA Programs		approved for protecting classified and unclassified National Security Systems (NSS). Below,	
Commercial : Classified Pro		announce preliminary plans for transitioning to quantum resistant algorithms.	
Global Inform	ation Grid	Background	
High Assuran	ce Platform	IAD will initiate a transition to quantum resistant algorithms in the not too distant future. B	
Inline Media		on experience in deploying Suite B, we have determined to start planning and communication	
> Suite B Cryp	otography	early about the upcoming transition to quantum resistant algorithms. Our ultimate goal is t	
		provide cost effective security against a potential quantum computer. We are working with	

Jintai Ding AKE from rLWE

・ロト ・聞ト ・ヨト ・ヨト

æ

Diffie-Hellman

What do we really need ?- a slides of L. Chen from NIST

Practical Challenge

- Quantum computing will break many public-key cryptographic algorithms/schemes
 - · Key agreement (e.g. DH and MQV)
 - Digital signatures (e.g. RSA and DSA)
 - Encryption (e.g. RSA)
- These algorithms have been used to protect Internet protocols (e.g. IPsec) and applications (e.g.TLS)
- NIST is studying "quantum-safe" replacements

Diffie-Hellman

The call from NIST

In PQC2016 in Japan, NIST make a call for quantum resistant algorithms by Dustin Moody

Deadline: November 2017

Diffie-Hellman

Post Quantum Needs – Functionality

• Key Exchange - for secure communications

• Signatures – for Authentication

▲ 同 ▶ → 三 ▶

Diffie-Hellman

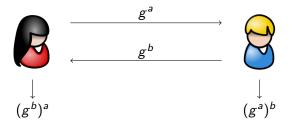
Key Exchange Applications — SSL/TLS

- RSA
- Diffie–Hellman
- Our goal replacements for post quantum world

- 4 同 2 4 日 2 4 4

Diffie-Hellman

Diffie-Hellman Key Exchange



(ロ) (四) (日) (日) (日)

æ

Generalizing DH

Diffie-Hellman

• DH works because maps $f(x) = x^a$ and $h(x) = x^b$ commute

$$f \circ h = h \circ f$$
,

– composition Nonlinearity

• Many attempts - Braid group etc

< 17 > <

Generalizing DH

Diffie-Hellman

- When do we have commuting *nonlinear* maps?
 - Powers of x (normal DH)
 - Iterates of a polynomial
 - Julia (Fatou)- Mmoire sur la permutabilit des fractions rationnelles, Annales de l'Ecole Normale Suprieure, vol. 39 (1922), pp. 131-215.
 - J. Ritt (1923) Power polynomials, Chebyshev polynomials. Elliptic curve

Diffie-Hellman

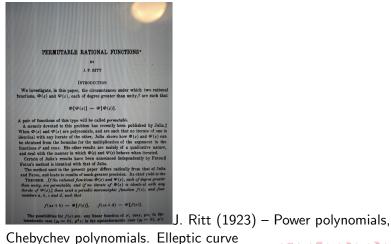
Who is J. Ritt: 1893-1951

Jintai Ding AKE from rLWE

メロト メポト メヨト メヨト

Diffie-Hellman

Who is J. Ritt: 1923: PERMUTABLE RATIONAL FUNCTIONS



cnev polynomials. Elleptic cu

(日) (同) (三) (三)

Generalizing DH

Diffie-Hellman

Our basic idea — adding "small" noise or perturbation:

• (Ring) LWE approximately commutes—use to build DH generalization

From

$$(s_1 \times a) \times s_2 = s_1 \times (a \times s_2)$$

to

$$(as_1+e_1)s_2\approx s_1as_2\approx (as_2+e_2)s_1.$$

▲ 同 ▶ → 三 ▶

Diffie-Hellman

A historical Note

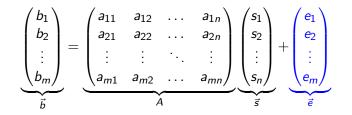
Our basic idea — adding "small" **noise or perturbation** is not new!!!

- GCHQ Communications-Electronics Security Group(CESG)
 James Elias "Invention of non-secret encryption" 1969
 Clifford Cocks RSA, Malcolm Williamson DH, 1973
- The forgotten inspiration of J. Elias –

"Ellis said that the idea first occurred to him after reading a paper from World War II by someone at Bell Labs describing a way to protect voice communications by the receiver adding (and then later subtracting) random noise (possibly this 1944 paper[4] or the 1945 paper co-authored by Claude Shannon)" – Wikipedia

Diffie-Hellman

Learning with Errors [2006, Regev]



- Approximate system over Z_q
- Hard to find \vec{s} from A, \vec{b} .
- Hard to tell if *s* even exists
- Reduction to lattice approximation problems

Ring LWE

Definition

Let *n* be a power of 2, $q \equiv 1 \pmod{2n}$ prime. Define the ring

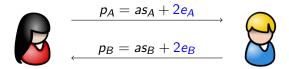
$$R_q = \frac{\mathbb{Z}_q[x]}{(x^n + 1)}$$

Diffie-Hellman

- Again, b = as + e hard to find s
- Hard to distinguish from uniform b
- Approximation problems on *ideal* lattices
- More efficient than standard LWE

Lattice Diffie-Hellman HMQV Lattice HMQV

Diffie-Hellman from Ideal Lattices

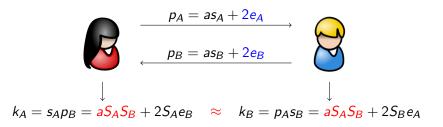


• Public $a \in R_q$. Acts like generator g in DH.

< (12) ト < 三 ト

Lattice Diffie-Hellman HMQV Lattice HMQV

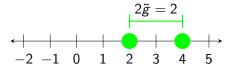
Diffie-Hellman from Ideal Lattices



- Public $a \in R_q$. Acts like generator g in DH.
- Each side's key is only *approximately* equal to the other.
- Difference is even—same low bits.
- No authentication—MitM

Lattice Diffie-Hellman HMQV Lattice HMQV

Wrap-around Illustrated



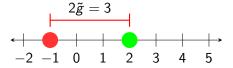
• Difference 2, both even.

æ

イロト イポト イヨト イヨト

Lattice Diffie-Hellman HMQV Lattice HMQV

Wrap-around Illustrated



- Difference 2, both even.
- But wait! If q = 5, $\mathbb{Z}_q = \{-2, -1, 0, 1, 2\}$.
- 4 becomes -1, now parities disagree!

Image: A = A

Lattice Diffie-Hellman HMQV Lattice HMQV

Compensating for Wrap-Around

•
$$g = 2S_A e_B - 2S_B e_A$$
.

• Recall:
$$|g^{(j)}| < \frac{q}{8}$$

• Define
$$E = \{-\lfloor \frac{q}{4} \rfloor, \dots, \lfloor \frac{q}{4} \rceil\}$$
. Middle half of \mathbb{Z}_q .

• If
$$k_B^{(j)} \in E$$
, no wrap-around occurs; $k_A^{(j)} \equiv k_B^{(j)}$.

• If
$$k_B^{(j)} \notin E$$
, then $k_B^{(j)} + \frac{q-1}{2} \in E$

• If
$$k_B^{(j)} \notin E$$
, $k_A^{(j)} + \frac{q-1}{2} \equiv k_B^{(j)} + \frac{q-1}{2}$.

・ロン ・聞と ・ ヨン ・ ヨン

æ

Lattice Diffie-Hellman HMQV Lattice HMQV

Wrap-around Defeated

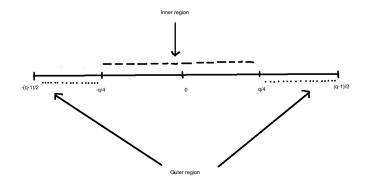
Define
$$w_B^{(j)} = \begin{cases} 0 & k_B^{(j)} \in E, \\ 1 & k_B^{(j)} \notin E. \end{cases}$$
 Then $k_B^{(j)} + w_B^{(j)} \frac{q-1}{2} \in E.$
Also, $k_B^{(j)} + w_B^{(j)} \frac{q-1}{2} \equiv k_A^{(j)} + w_B^{(j)} \frac{q-1}{2} \pmod{2}.$
• $k_B^{(j)} + w_B^{(j)} \frac{q-1}{2} \mod q \mod 2 = k_A^{(j)} + w_B^{(j)} \frac{q-1}{2} \mod q \mod 2.$
• Wrap-around correction $w_B = (w_B^{(0)}, w_B^{(1)}, \dots, w_B^{(n-1)})$
• $\sigma_B = k_B + w_B \frac{q-1}{2} \mod 2.$
• $\sigma_A = k_A + w_B \frac{q-1}{2} \mod 2.$

æ

メロト メポト メヨト メヨト

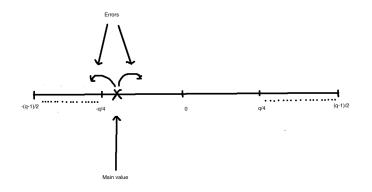
Lattice Diffie-Hellman HMQV Lattice HMQV

Rounding Intuition – Region Division



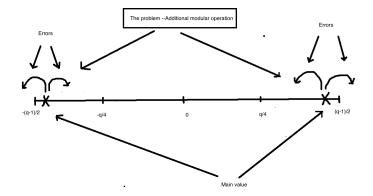
Lattice Diffie-Hellman HMQV Lattice HMQV

Rounding Intuition – Inner Region



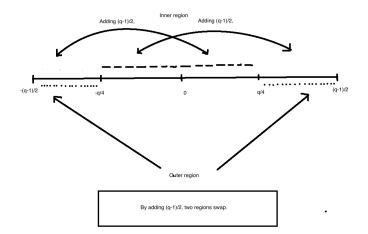
Lattice Diffie-Hellman HMQV Lattice HMQV

Rounding Intuition – Outer Region problem



Lattice Diffie-Hellman HMQV Lattice HMQV

Rounding Intuition



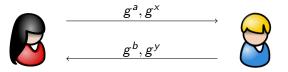
Lattice Diffie-Hellman HMQV Lattice HMQV

Authentication: HMQV – To Resist Man-in-the-middle Attack and Achieve Forward Security

• Static keys a, b; tied to each party's identity.

Lattice Diffie-Hellman HMQV Lattice HMQV

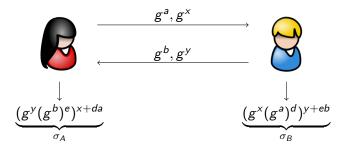
Authentication: HMQV – To Resist Man-in-the-middle Attack and Achieve Forward Security



- Static keys *a*, *b*; tied to each party's identity.
- Ephemeral keys x, y: forward security.

Lattice Diffie-Hellman HMQV Lattice HMQV

Authentication: HMQV – To Resist Man-in-the-middle Attack and Achieve Forward Security

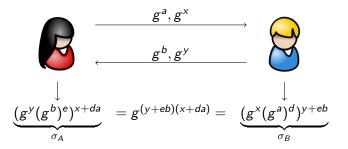


- Static keys *a*, *b*; tied to each party's identity.
- Ephemeral keys x, y: forward security.
- Publicly derivable computations d, e.

<ロト < 同ト < 三ト

Lattice Diffie-Hellman HMQV Lattice HMQV

Authentication: HMQV – To Resist Man-in-the-middle Attack and Achieve Forward Security



- Static keys a, b; tied to each party's identity.
- Ephemeral keys x, y: forward security.
- Publicly derivable computations d, e.
- Shared key is $K = H(\sigma_A) = H(\sigma_B) = H(g^{(y+be)(x+da)})$

Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices

$$p_B = as_B + 2e_B$$

(日)

∍ →

• p_A , p_B as above. Public, static keys for authentication

Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices

$$p_A = as_A + 2e_A, x_A = ar_A + 2f_A$$

$$p_B = as_B + 2e_B, y_B = ar_B + 2f_B$$

(日)

- p_A , p_B as above. Public, static keys for authentication
- x_A, y_B same form. Forward secrecy.

Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices

$$\begin{array}{c}
p_A = as_A + 2e_A, x_A = ar_A + 2f_A \\
p_B = as_B + 2e_B, y_B = ar_B + 2f_B \\
\downarrow \\
k_A = (p_B d + y_B)(s_A c + r_A) \\
+ 2dg_A \\
\approx (aS_B d + ar_B)(s_A c + r_A) \\
\approx (aS_B d + ar_B)(s_A c + r_A) \\
\approx (aS_A c + ar_A)(s_B d + r_B)
\end{array}$$

- p_A , p_B as above. Public, static keys for authentication
- x_A, y_B same form. Forward secrecy.
- c, d publicly derivable; g_A, g_B random, small.

Lattice Diffie-Hellman HMQV Lattice HMQV

Key Derivation

Obtaining shared secret from approximate shared secret:

$$k_{A} = (k_{A}^{(0)}, k_{A}^{(1)}, \dots, k_{A}^{(n-1)})$$
$$k_{B} = (k_{B}^{(0)}, k_{B}^{(1)}, \dots, k_{B}^{(n-1)})$$
$$\tilde{g} = (g^{(0)}, g^{(1)}, \dots, g^{(n-1)})$$
$$k_{A} - k_{B} = 2\tilde{g}$$
$$k_{A} \equiv k_{B} \pmod{2}$$

< 同 → <

Lattice Diffie-Hellman HMQV Lattice HMQV

Key Derivation

Obtaining shared secret from approximate shared secret:

$$k_{A} = (k_{A}^{(0)}, k_{A}^{(1)}, \dots, k_{A}^{(n-1)})$$
$$k_{B} = (k_{B}^{(0)}, k_{B}^{(1)}, \dots, k_{B}^{(n-1)})$$
$$\tilde{g} = (g^{(0)}, g^{(1)}, \dots, g^{(n-1)})$$
$$k_{A} - k_{B} = 2\tilde{g}$$
$$k_{A} \equiv k_{B} \pmod{2}$$

- Each $k_A^{(j)} = k_B^{(j)} + 2g^{(j)}$.
- Each $g^{(j)}$ is small $(|g^{(j)}| < \frac{q}{8})$.
- Matching coefficients differ by small multiple of 2
- Take each coefficient mod 2, get *n* bit secret

Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices—Corrected

 p_A, x_A

・ロン ・聞と ・ ヨン ・ ヨン

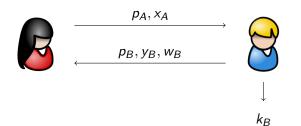
Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices—Corrected

・ロン ・聞と ・ ヨン ・ ヨン

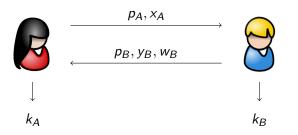
Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices—Corrected



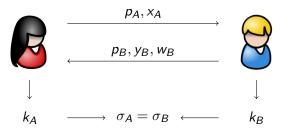
Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices—Corrected



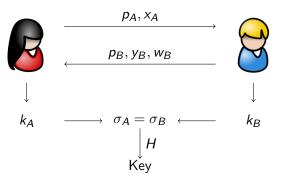
Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices—Corrected



Lattice Diffie-Hellman HMQV Lattice HMQV

HMQV from Ideal Lattices—Corrected



(日) (同) (三) (三)

Proof Games

Proof proceeds by series of games:

- Begin with simulated protocol
- Replace one hash output with true random value, back-program random oracle
- Adversary cannot distinguish from previous game
- Eventually, if original protocol can be distinguished from random, rLWE can be broken
- The modification using rejecting sampling

Forward Security

- If static keys compromised, previous session keys remain secure
- Notion captured in proof by giving adversaries ability to corrupt static key
- Use Bellare–Rogaway model restricted to two-pass

Quantum Hardness

- Proof uses Random Oracle Model—quantum implications not fully understood
- Important step to post quantum key exchange

- T

Implementations Parameters

Parameters	n	Security (expt.)	α	γ	$\log \frac{\beta}{\alpha}$	$\log q$ (bits)
*	1024	80 bits	3.397	101.919	8.5	40
II	2048	80 bits	3.397	161.371	27	78
III	2048	128 bits	3.397	161.371	19	63
IV	4096	128 bits	3.397	256.495	50	125
V	4096	192 bits	3.397	256.495	36	97
VI	4096	256 bits	3.397	256.495	28	81

æ

Communication Overheads

Choice of	Size (KB)			
Parameters	pk	sk (expt.)	init. msg	resp. msg
*	5 KB	0.75 KB	5 KB	5.125 KB
II	19.5 KB	1.5 KB	19.5 KB	19.75 KB
	15.75 KB	1.5 KB	15.75 KB	16 KB
IV	62.5 KB	3 KB	62.5 KB	63 KB
V	48.5 KB	3 KB	48.5 KB	49 KB
VI	40.5 KB	3 KB	40.5 KB	41 KB

The bound 6α with $\operatorname{erfc}(6) \approx 2^{-55}$ is used to estimate the size of secret keys.

◆ 同 → → 三

Timings

Parameters	Initiation	Response	Finish
I	3.22 ms (0.02 ms)	8.50 ms (4.69 ms)	5.23 ms (4.73 ms)
II	12.00 ms (0.04 ms)	29.33 ms (14.64 ms)	17.28 ms (14.61 ms)
	10.33 ms (0.04 ms)	25.83 ms (13.46 ms)	15.58 ms (13.40 ms)
IV	83.61 ms (0.08 ms)	156.58 ms (39.86 ms)	73.11 ms (39.73 ms)
V	61.74 ms (0.08 ms)	117.81 ms (32.58 ms)	55.64 ms (32.20 ms)
VI	25.42 ms (0.08 ms)	62.31 ms (31.32 ms)	36.80 ms (31.29 ms)

Table: Timings of Proof-of-Concept Implementations in ms (The figures in the parentheses indicate the timings with pre-computing. For comparison, by simply using the "speed" command in openssl on the same machine, the timing for dsa1024 signing algorithm is about 0.7 ms, and for dsa2048 is about 2.3 ms).

I D > I A P > I F

- We build a simple AKE based on RLWE.
- They are provably secure.
- We can prove the Forward Security of the AKE.
- Our preliminary implementations are very efficient. Our AKE are strong candidates for the post-quantum world.

Work in Progress

- Password authenticated Key Exchange(PAKE) https://eprint.iacr.org/2016/552.pdf
- Authentication protocol using the signal functions.

< (12) ト < 三 ト

Work in Progress-Authentication Protocol

Prover (P)		Verifier (V)
Sample $s, e \leftarrow \chi_{\alpha}$ Secret Key: $s \in R_q$ Public Key: $p = as + e \in R_q, a$ Sample $s_1, e_1 \leftarrow \chi_{\alpha}$ Compute: $p_1 = as_1 + e_1 \in R_q$	p_1	
	x, b	Sample $s', e' \leftarrow \chi_{\alpha}$ Set: $x = as' + e' \in R_q$ Random Challenge bit $b \leftarrow \{-1, 1\}$
$\begin{array}{l} \text{Sample } g_p \leftarrow \chi_\alpha \\ \text{Compute } k_p = (s_1 + bs)x + g_p \\ w = Sig(k_p) \end{array}$	w	Sample $g_v \leftarrow \chi_{\alpha}$ Compute $k_v = (p_1 + bp)s' + g_v$ Verify if w match with the value of k_v

Fig. 1. Authenticated Protocol

・ 同 ト ・ 三 ト ・

Thank NIST and NSF for support!

Thank you !

You can email your questions or comments to jintai.ding@gmail.com