FHE Circuit Privacy Almost For Free

Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee

CNRS, École normale supérieure, INRIA, PSL, Paris, France

Workshop HEAT 2016 — Paris, France Tuesday, July 5

Motivation and previous approaches

- Online Service with Data Privacy
- Issue with Server-Side Privacy
- Previous approaches
- 2 Core Lemma
 - Statement
 - Proof Intuition
- ③ Circuit Privacy for GSW
 - Branching Programs Evaluations
 - Noise analysis of one step
 - Noise analysis of the final ciphertext

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Example: red-eye removal

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Example: red-eye removal

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Example: red-eye removal

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Data privacy: FHE

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

GSW encryption scheme [GenSahWat13]

$$\mathbf{G} = \mathbf{Id}_n \otimes \mathbf{g}, \quad \mathbf{g} = \left(1, 2, \dots, 2^k\right)$$
$$\mathbf{C} = \mathsf{Enc}(\mu) = \begin{pmatrix} \mathbf{A} \\ \mathbf{sA} + \mathbf{e} \end{pmatrix} + \mu \mathbf{G} \in \mathbb{Z}_q^{n \times m}$$

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

GSW encryption scheme [GenSahWat13]

$$\begin{aligned} \mathbf{G} &= \mathbf{Id}_n \otimes \mathbf{g}, \quad \mathbf{g} = \left(1, 2, \dots, 2^k\right) \\ \mathbf{C} &= \mathsf{Enc}(\mu) = \begin{pmatrix} \mathbf{A} \\ \mathbf{sA} + \mathbf{e} \end{pmatrix} + \mu \mathbf{G} \in \mathbb{Z}_q^{n \times m} \end{aligned}$$

 $\begin{array}{l} \mathsf{Sum} \ \mathsf{Enc}(\mu_1) + \mathsf{Enc}(\mu_2) \\ \mathsf{Product} \ \mathsf{Enc}(\mu_1) \cdot \mathbf{G}^{-1}(\mathsf{Enc}(\mu_2)) \\ \mathsf{where} \ \forall \ \mathbf{v} \in \mathbb{Z}_q^n, \ \mathbf{G}^{-1}(\mathbf{v}) \in \mathbb{Z}_q^m \ \text{is small} \ \text{and s.t.} \ \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{v}) = \mathbf{v} \end{array}$

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Protecting the algorithm: circuit privacy

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Leakage in the error term: toy example

Given s, and 3 encryptions of 0:

$$\begin{aligned} \mathbf{C_1} &= \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{sA}_1 + \mathbf{e}_1 \end{pmatrix}, \ \mathbf{C_2} &= \begin{pmatrix} \mathbf{A}_2 \\ \mathbf{sA}_2 + \mathbf{e}_2 \end{pmatrix}, \ \mathbf{C_3} &= \begin{pmatrix} \mathbf{A}_3 \\ \mathbf{sA}_3 + \mathbf{e}_3 \end{pmatrix}. \end{aligned}$$

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Leakage in the error term: toy example

Given s, and 3 encryptions of 0:

$$\mathbf{C_1} = \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{sA}_1 + \mathbf{e}_1 \end{pmatrix}, \ \mathbf{C_2} = \begin{pmatrix} \mathbf{A}_2 \\ \mathbf{sA}_2 + \mathbf{e}_2 \end{pmatrix}, \ \mathbf{C_3} = \begin{pmatrix} \mathbf{A}_3 \\ \mathbf{sA}_3 + \mathbf{e}_3 \end{pmatrix}.$$

 $C_i + C_j$ leaks *i* and *j*:

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Leakage in the error term: toy example

Given s, and 3 encryptions of 0:

$$\mathbf{C_1} = \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{sA}_1 + \mathbf{e}_1 \end{pmatrix}, \ \mathbf{C_2} = \begin{pmatrix} \mathbf{A}_2 \\ \mathbf{sA}_2 + \mathbf{e}_2 \end{pmatrix}, \ \mathbf{C_3} = \begin{pmatrix} \mathbf{A}_3 \\ \mathbf{sA}_3 + \mathbf{e}_3 \end{pmatrix}.$$

 $C_i + C_j$ leaks *i* and *j*: The error term is $e_i + e_j!$

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Protecting the algorithm: circuit privacy

$Eval(f, C_1, \ldots, C_\ell)$ should reveal nothing on f but $f(\mu_1, \ldots, \mu_\ell)$.

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Noise flooding [Gen09]

$$\mathbf{C}_{f} = \mathsf{Eval}(f, \mathbf{C}_{1}, \dots, \mathbf{C}_{n}),$$

• $\mathbf{C}_{f} = \mathbf{C}_{f} + \begin{pmatrix} \mathbf{0} \\ \mathbf{e}' \end{pmatrix}, \quad q \gg \mathbf{e}' \gg \mathbf{e}_{f}$

Pros Destroys all information contained in the noise Cons Requires superpolynomial modulus, not multi-hop

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Soak-spin-repeat [DucSte16]

$$C_f = Eval(f, C_1, \dots, C_n)$$

•
$$\mathbf{C}_f = \mathbf{C}_f + \begin{pmatrix} \mathbf{0} \\ \mathbf{e}' \end{pmatrix}, \quad \mathbf{e}' \approx \mathbf{e}_f$$

•
$$C_f = Eval(Dec(\cdot, C_f), Enc(sk)))$$

Pros Works with polynomial modulus, multi-hop Cons Requires circular security (bootstrapping)

Online Service with Data Privacy Issue with Server-Side Privacy Previous approaches

Our approach [BDMW16]

$$\label{eq:cf} \begin{split} \mathbf{C}_f = & \mathsf{Eval}(f, \mathbf{C}_1, \dots, \mathbf{C}_n), \\ \bullet \ \mathbf{C}_f = & \mathbf{C}_f + \begin{pmatrix} \mathbf{0} \\ \mathbf{e}' \end{pmatrix}, \quad \mathbf{e}' \approx \mathbf{e}_f \end{split}$$

Pros Polynomial modulus, no circular security, multi-hop Cons Only for NC¹ evaluations on GSW, leaks |f|

Statement Proof Intuition

Variant on discrete Gaussian leftover hash lemma

For any small $\mathbf{e} \in \mathbb{Z}_q^k$, $\mathbf{v} \in \mathbb{Z}_q$,

$$\left< \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \right> + e' \approx_{s} y,$$

where

• $\mathbf{g}^{-1}(\mathbf{v})$ is a *discrete Gaussian* conditioned on the fact that $\langle \mathbf{g}, \mathbf{g}^{-1}(\mathbf{v}) \rangle = \mathbf{v}$,

• y is a discrete Gaussian with parameter $\tilde{O}(\|\mathbf{e}\|)$.

Statement Proof Intuition

Some intuition

 $\langle \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \rangle + e' \approx_{s} y,$

Statement Proof Intuition

Some intuition

$$\left< \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \right> + e' \approx_{s} y,$$

• A sum of Gaussians is Gaussian: $\langle {\bf e}, {\bf g}^{-1}({\bf v}) \rangle$ is a discrete Gaussian over a certain lattice.

Statement Proof Intuition

Some intuition

$$\left< \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \right> + e' \approx_{s} y,$$

• A sum of Gaussians is Gaussian: $\langle \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \rangle$ is a discrete Gaussian over a certain lattice.

 $\bullet\,$ The second term ensures that the support is $\mathbb Z.$

Statement Proof Intuition

Slightly more technical

$$\left< \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \right> + e' \approx_{s} y,$$

Let $\Lambda = \{ \mathbf{x} \mid \langle \mathbf{g}, \mathbf{x} \rangle = 0 \mod q \}$,

Statement Proof Intuition

Slightly more technical

$$\left< \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \right> + e' \approx_{s} y,$$

Let
$$\Lambda = \{ \mathbf{x} \mid \langle \mathbf{g}, \mathbf{x} \rangle = 0 \mod q \}$$
,
 $\Lambda_{\mathbf{e}} = \{ (\mathbf{x}, t) \in \Lambda \times \mathbb{Z} \mid \langle \mathbf{x}, \mathbf{e} \rangle + t = 0 \}.$

Statement Proof Intuition

Slightly more technical

$$\left< \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \right> + e' \approx_{s} y,$$

Let
$$\Lambda = \{\mathbf{x} \mid \langle \mathbf{g}, \mathbf{x} \rangle = 0 \mod q\}$$
,
 $\Lambda_{\mathbf{e}} = \{(\mathbf{x}, t) \in \Lambda \times \mathbb{Z} \mid \langle \mathbf{x}, \mathbf{e} \rangle + t = 0\}$.
 $(\mathbf{g}^{-1}(v), e')$ is a Gaussian on a coset of $\Lambda_{\mathbf{e}}$.

Statement Proof Intuition

Slightly more technical

$$\left< \mathbf{e}, \mathbf{g}^{-1}(\mathbf{v}) \right> + e' \approx_{s} y,$$

Let
$$\Lambda = \{\mathbf{x} \mid \langle \mathbf{g}, \mathbf{x} \rangle = 0 \mod q\}$$
,
 $\Lambda_{\mathbf{e}} = \{(\mathbf{x}, t) \in \Lambda \times \mathbb{Z} \mid \langle \mathbf{x}, \mathbf{e} \rangle + t = 0\}$.
 $(\mathbf{g}^{-1}(v), e')$ is a Gaussian on a coset of $\Lambda_{\mathbf{e}}$.
What we show:

$$\eta_{arepsilon}(\Lambda_{\mathbf{e}}) = \widetilde{O}(\|\mathbf{e}\|)$$

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

Branching programs

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

One step of computation

$$v_t[i] = v_{t-1}[\pi_{t,x}^{-1}(i)]$$

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

One step of computation

$$v_t[i] = v_{t-1}[\pi_{t,x}^{-1}(i)]$$

= $x \cdot v_{t-1}[\pi_{t,1}^{-1}(i)] + (1-x) \cdot v_{t-1}[\pi_{t,0}^{-1}(i)]$

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

$$\mathbf{V}_{t}[i] = \mathbf{C} \cdot \mathbf{G}^{-1}(\mathbf{V}_{t-1}[\pi_{t,1}^{-1}(i)]) + (\mathbf{G} - \mathbf{C}) \cdot \mathbf{G}^{-1}(\mathbf{V}_{t-1}[\pi_{t,0}^{-1}(i)])$$

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

$$\begin{aligned} \mathbf{V}_t[i] &= \mathbf{C} \cdot \mathbf{G}^{-1}(\mathbf{V}_{t-1}[\pi_{t,1}^{-1}(i)]) + (\mathbf{G} - \mathbf{C}) \cdot \mathbf{G}^{-1}(\mathbf{V}_{t-1}[\pi_{t,0}^{-1}(i)]) \\ &+ \begin{pmatrix} \mathbf{0} \\ \mathbf{e}' \end{pmatrix} \end{aligned}$$

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

$$\begin{aligned} \mathbf{V}_{t}[i] = & \mathbf{V}_{t-1}[\pi_{t,x}^{-1}(i)] + \hat{\mathbf{A}} \cdot \left(\mathbf{G}^{-1}(\mathbf{V}_{t-1}[\pi_{t,1}^{-1}(i)]) - \mathbf{G}^{-1}(\mathbf{V}_{t-1}[\pi_{t,0}^{-1}(i)]) \right) \\ &+ \begin{pmatrix} \mathbf{0} \\ \mathbf{e}' \end{pmatrix} \end{aligned}$$

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

$$\mathbf{V}_t[i] \approx_s \mathbf{V}_{t-1}[\pi_{t,x}^{-1}(i)] + \begin{pmatrix} \mathbf{B} \\ \mathbf{sB} + \mathbf{y} \end{pmatrix}$$

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

Circuit privacy by induction

Noise($\mathbf{V}_t[i]$) \approx_s Noise($\mathbf{V}_{t-1}[\pi_{1,x_1}^{-1}(i)]$) + y

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

Circuit privacy by induction

Noise($\mathbf{V}_t[i]$) \approx_s Noise($\mathbf{V}_{t-1}[\pi_{1,x_1}^{-1}(i)]$) + y

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

Circuit privacy by induction

Noise($\mathbf{V}_t[i]$) \approx_s Noise($\mathbf{V}_{t-1}[\pi_{1,x_1}^{-1}(i)]$) + y

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

Circuit privacy by induction

Noise($\mathbf{V}_t[i]$) \approx_s Noise($\mathbf{V}_{t-1}[\pi_{1,x_1}^{-1}(i)]$) + y

Noise term independent of computation !

Branching Programs Evaluations Noise analysis of one step Noise analysis of the final ciphertext

Thank you!

Questions?