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GSW encryption scheme [GenSahWat13]

G = Idn ⊗ g, g =
(

1, 2, . . . , 2k
)

C = Enc(µ) =

(
A

sA + e

)
+ µG ∈ Zn×m

q

Sum Enc(µ1) + Enc(µ2)

Product Enc(µ1) · G−1(Enc(µ2))

where ∀ v ∈ Zn
q, G

−1(v) ∈ Zm
q is small and s.t. G · G−1(v) = v
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Issue with Server-Side Privacy
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Leakage in the error term: toy example

Given s, and 3 encryptions of 0:

C1 =

(
A1

sA1 + e1

)
, C2 =

(
A2

sA2 + e2

)
, C3 =

(
A3

sA3 + e3

)
.

Ci + Cj leaks i and j :
The error term is ei + ej !
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Protecting the algorithm: circuit privacy

Eval(f ,C1, . . . ,C`) should reveal nothing on f but f (µ1, . . . , µ`).

8 / 17



Motivation and previous approaches
Core Lemma

Circuit Privacy for GSW

Online Service with Data Privacy
Issue with Server-Side Privacy
Previous approaches

Noise flooding [Gen09]

Cf =Eval(f ,C1, . . . ,Cn),

Cf = Cf +

(
0
e′

)
, q � e′ � ef

Pros Destroys all information contained in the noise

Cons Requires superpolynomial modulus, not multi-hop
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Soak-spin-repeat [DucSte16]

Cf =Eval(f ,C1, . . . ,Cn),

Cf = Cf +

(
0
e′

)
, e′ ≈ ef

Cf = Eval(Dec(·,Cf),Enc(sk)))

Repeat O(λ) times

Pros Works with polynomial modulus, multi-hop

Cons Requires circular security (bootstrapping)
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Our approach [BDMW16]

Cf =Eval(f ,C1, . . . ,Cn),

Cf = Cf +

(
0
e′

)
, e′ ≈ ef

Pros Polynomial modulus, no circular security, multi-hop

Cons Only for NC1 evaluations on GSW, leaks |f |
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Statement
Proof Intuition

Variant on discrete Gaussian leftover hash lemma

For any small e ∈ Zk
q , v ∈ Zq,〈

e, g−1(v)
〉

+ e ′ ≈s y ,

where

g−1(v) is a discrete Gaussian conditioned on the fact that〈
g, g−1(v)

〉
= v ,

y is a discrete Gaussian with parameter Õ(‖e‖).
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Some intuition

〈
e, g−1(v)

〉
+ e ′ ≈s y ,

A sum of Gaussians is Gaussian:〈
e, g−1(v)

〉
is a discrete Gaussian over a certain lattice.

The second term ensures that the support is Z.

Let Λ = {x | 〈g, x〉 = 0 mod q},
Λe = {(x, t) ∈ Λ× Z | 〈x, e〉+ t = 0}.
(g−1(v), e ′) is a Gaussian on a coset of Λe.
What we show:

ηε(Λe) = Õ(‖e‖)
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Branching programs

1 0 0

0 0 0

0 1 1

0

1
1

0

x1 = 1 x2 = 0

result

result =
(
πL,xvar(L)

◦ . . . ◦ π1,xvar(1)
(1)

?
= 1
)
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One step of computation

[1] [1]

[2] [2]

[3] [3]
0

1

1

x = 1

CC = Â + xG

vt−1 vt

Vt−1 Vt

vt [i ] = vt−1[π−1
t,x (i)]

= x · vt−1[π−1
t,1 (i)] + (1− x) · vt−1[π−1

t,0 (i)]
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Circuit privacy by induction

0

e1

0

e2

0

e3

Noise(V0)

Noise(V1) Noise(V2)

Noise(Vt [i ]) ≈s Noise(Vt−1[π−1
1,x1

(i)]) + y

Noise term independent of computation !
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Thank you!

Questions?
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