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Two main uses of lattice reduction in crypto

Context 1: cryptanalysis of lattice-based cryptosystems.

NTRU (encryption & signature)

All cryptosystems based on SIS and LWE and their ring
variants

⇒ Huge dims, small entries, very expensive task

Context 2: cryptanalysis of other cryptosystems.

Variants of RSA (with Coppersmith’s method)

⇒ Large dims, huge entries, much less costly
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Damien Stehlé Lattice reduction 07/07/2016 2/37



Background on lattices Lattice reduction framework BKZ SIS LLL Conclusion

Roadmap

Goal of this talk

An introductive overview on lattice reduction algorithms

1 Background on lattices

2 The lattice reduction framework

3 Strong but slow: BKZ

4 Solving the SIS problem

5 Weak but fast: LLL
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Euclidean lattices

Lattice ≡
{∑

i≤n xibi : xi ∈ Z
}
,

for linearly indep. bi ’s in R
n,

referred to as lattice basis

Bases are not unique, but can
be obtained from one another by
integer transforms of determinant ±1:
[
−2 1
10 6

]
=

[
4 −3
2 4

]
·
[
1 1
2 1

]

Lattice reduction

Find a short basis, given an arbitrary one
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Lattice invariants

Minimum:

λ(L) = min (‖b‖ : b ∈ L \ 0)
Determinant:

det L = | det(bi)i |, for any basis

Minkowski theorem

λ(L) ≤ √n · (det L) 1
n , for any L of dim n

Lattice reduction

Find a basis that is short compared
to λ(L) and/or (det L)

1
n
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Computational problems on lattices

The Shortest Vector Problem: SVPγ

Given a basis of L, find b ∈ L s.t.: 0 < ‖b‖ ≤ γ · λ(L)

Effective Minkowski theorem: HSVPγ

Given a basis of L, find b ∈ L s.t.: 0 < ‖b‖ ≤ γ · (det L) 1
n

Many other problems: BDDγ, CVPγ, uSVPγ , SIVPγ, etc.
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The bad news...

SVPγ is NP-hard for γ = O(1) (under random. red.) [Ajt98]

SVPγ , HSVPγ , BDDγ... in P for γ = 2Ω(n
log log n
log n )

[Sch87,MiVo10]

When γ ≥ nΩ(1), the cost of the best known algorithm is:

Poly(m, log ‖B‖) ·
(
1 +

n

log γ

)O
(
1 + n

log γ

)

.

For γ ≤ Poly(n), the cost is Poly(m, log ‖B‖) · 2O(n).
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Roadmap

1 Background on lattices

2 The lattice reduction framework

3 Strong but slow: BKZ

4 Solving the SIS problem

5 Weak but fast: LLL
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From n
2 to n(n + 1)/2 variables: QR-factorisation

Goal of lattice reduction

Given B ∈ R
n×n full-rank, find U ∈ GLn(Z) s.t. B · U has small

coeffs, i.e., its columns have small euclidean norms

As ‖ · ‖ is invariant under rotations, we may work on triangular
matrices:

B = Q︸︷︷︸
orthogonal

· R︸︷︷︸
up-triangular

(QR-factorisation)

r11 is the norm of b1

rii is the norm of the proj. of bi orthogonally to (bj)j<i

This is equivalent to Gram-Schmidt Orthogonalisation
Damien Stehlé Lattice reduction 07/07/2016 9/37
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QR-factorisation and GSO

QR is equivalent to Gram-Schmidt Orthogonalisation:

For all i , b∗
i = bi −

∑
j<i µijb

∗
j is the projection of bi

orthogonally to SpanR(b1, . . . ,bi−1).

We have ‖b∗
i ‖ = rii and µij =

rji
rjj

for i > j .

=

b
∗

2

b
∗

3

b
2

b
3

b
1

b
∗

1
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From n(n + 1)/2 to n variables: size-reduction

Goal of lattice reduction

Given R ∈ R
n×n up-triangular, find U ∈ GLn(Z)

s.t. R · U has a small R-factor
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⇒
∣∣∣r (new)
ij

∣∣∣ ≤ |rii |
2

But other coefficients of R may have changed:
If they were small, they may not be small anymore...
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Damien Stehlé Lattice reduction 07/07/2016 11/37



Background on lattices Lattice reduction framework BKZ SIS LLL Conclusion

From n(n + 1)/2 to n variables: size-reduction

Goal of lattice reduction

Given R ∈ R
n×n up-triangular, find U ∈ GLn(Z)

s.t. R · U has a small R-factor





















. . .
.
.. . . .

.

.. . . .
rii . . . rij . . .

. . .
..
. . . .
rjj . . .

. . .





















·























. . .

1 −⌊
rij
rii
⌉

. . .

1

. . .























⇒
∣∣∣r (new)
ij

∣∣∣ ≤ |rii |
2

But other coefficients of R may have changed:
If they were small, they may not be small anymore...
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From n(n + 1)/2 to n variables: size-reduction
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This modifies the top of the j-th column.
⇒ Proceed from bottom to top.

Size-reduced basis

A basis is said size-reduced if |rij | ≤ rii/2 for all i < j

Size-reduction grants control of the off-diagonal coeffs

It can be performed with Poly(n, log ‖B‖) cost
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Where are we now?

Goal of lattice reduction

Given R ∈ R
n×n up-triangular, find U ∈ GLn(Z)

s.t. the R-factor of R · U has small diagonal coeffs

What does it mean, as the product of the rii ’s is constant?
We want to

make the first rii ’s small,

make the rii ’s balanced, or preventing them from
decreasing fast
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The best we can do: HKZ

HKZ-reduction

R up-triangular is HKZ-reduced if

r11 = λ(L) with L =
∑

i Zri

and (rij)i ,j>1 is HKZ-reduced

In the worst case, we have, for all i ≤ n:

rii ≈
√
n − i + 1 ·

(
n∏

j=i

rjj

) 1
n−i+1

Fixing rnn fixes the other rii ’s.
As this is all multiplicative, we use xi = log rii instead.
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HKZ-reduction

R up-triangular is HKZ-reduced if

r11 = λ(L) with L =
∑

i Zri

and (rij)i ,j>1 is HKZ-reduced

Worst-case HKZ profile:

xi = log rii

= O(log2(n − i + 1))

Cost of HKZ:

Computationally eq. to SVP

Time & space 2O(n) x10x9x8x7x6x5x4x3x2x1
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Cost of HKZ:

Computationally eq. to SVP

Time & space 2O(n) x10x9x8x7x6x5x4x3x2x1
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Lattice reduction: the rules of the game

Goal of lattice reduction

Given R ∈ R
n×n up-triangular, find U ∈ GLn(Z)

s.t. the R-factor of R · U has small diagonal coeffs

HKZ too costly... What can we do?
1 Swap two consecutive vectors s.t. ri+1,i+1 ≪ ri ,i [LLL82]

2 Balance the diag. coeffs locally by applying lattice
reduction (e.g., HKZ) to a diag. submatrix of R [Sch87]
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Roadmap

1 Background on lattices

2 The lattice reduction framework

3 Strong but slow: BKZ

4 Solving the SIS problem

5 Weak but fast: LLL
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BKZ: A global reduction approach

[Sch87,ScEu91]: Do HKZ on k-dim. diagonal submatrices of R

BKZk , simplified version

Input: R ∈ R
n×n up-triangular

Repeat ... times

For i from 1 to n − k + 1 do

HKZ-reduce the k-dim sub-matrix of R starting at rii
Update the R-factor and size-reduce it

How many iterations?

What is the output quality?
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A sandpile model for BKZk [HaPuSt11]

Regularity assumption: Each HKZ-reduction gives a worst-case profile

x1 x2 x3 x4 x5 x6 x7 x8 x9
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BKZk ’s sandpile as a dynamic system

x1 x2 x3 x4 x5 x6 x7 x8 x9

X = (x1, . . . , xn)
T

X0.5 ← A1X

X1 ← A1X + Γ1
X2 ← A2X1 + Γ2
. . .
Xj = AjXj + Γj
with j = n − k + 1

A full tour:
X ′ ← AX + Γ
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Damien Stehlé Lattice reduction 07/07/2016 20/37



Background on lattices Lattice reduction framework BKZ SIS LLL Conclusion

Analysis of BKZ in the sandpile model

Discrete-time affine dynamical system, for one loop iteration

X ← AX + Γ
Reducedness of the output ⇒ fixed points

Speed of convergence ⇒ eigenvalues of ATA

⇒ the convergence is geometric, for the xi ’s
⇒ for fixed k and n, there are O(log log ‖B‖) iterations
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Analysis of BKZ [HaPuSt11,Neumaier16]

One can solve X = AX + Γ, find the eigenvalues of ATA, and
remove the regularity assumption... cumbersome...

Neumaier’s reducedness parameter

ν := max
i≤n−k

1

n − i

(∑
j≤i xj

i
−
∑

j≤n xj

n

)
.

(
∑

j≤i xj)/i is a smoothed proxy for xi .

Taking i = 1 gives ‖b1‖ ≤ exp(ν)n−1 · (detB)1/n.
The definition is justified by the fact we expect the xi ’s to
decrease linearly after reduction
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Cost of BKZ

Neumaier’s reducedness parameter

ν := max
i≤n−k

1

n − i

(∑
j≤i xj

i
−
∑

j≤n xj

n

)
.

Cost of BKZ

At every tour before reaching the fix-point:

ν decreases by a factor ≤ 1− k2/n2.

⇒ BKZ requires O(n · n2
k2 · log log ‖B‖) calls to an SVP oracle

to (essentially) reach the fix-point.

Neumaier’s parameter also allows to analyze variants of BKZ,
including SDBKZ [MiWa16].

Damien Stehlé Lattice reduction 07/07/2016 23/37



Background on lattices Lattice reduction framework BKZ SIS LLL Conclusion

Cost of BKZ

Neumaier’s reducedness parameter

ν := max
i≤n−k

1

n − i

(∑
j≤i xj

i
−
∑

j≤n xj

n

)
.

Cost of BKZ

At every tour before reaching the fix-point:

ν decreases by a factor ≤ 1− k2/n2.

⇒ BKZ requires O(n · n2
k2 · log log ‖B‖) calls to an SVP oracle

to (essentially) reach the fix-point.

Neumaier’s parameter also allows to analyze variants of BKZ,
including SDBKZ [MiWa16].
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Roadmap

1 Background on lattices

2 The lattice reduction framework

3 Strong but slow: BKZ

4 Solving the SIS problem

5 Weak but fast: LLL
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SIS [Ajt96]

The Small Integer Solution Problem

Given a uniform A ∈ Z
m×n
q , find x ∈ Z

m s.t.:
0 < ‖x‖ ≤ β and xt · A = 0 mod q.

Hash functions [Ajt96,LyMi08,PeRo08]

Commitment scheme [KeTaXa08]

Digital signatures [GePeVa08,Boy10,Lyu12]

And many more.
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Viewing SIS as a lattice problem

Given A ∈ Z
m×n
q , find x s.t.: 0 < ‖x‖ ≤ β and xt · A = 0 [q]

Short 6= 0 vector in L = {x ∈ Z
m : xt · A = 0 [q]}:

det L = qn (with high prob.), dim L = m

We may optimize over m′ ≤ m:

Less freedom, larger smallest solutions

But smaller lattice dimension
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Solving SIS with BKZ

Short 6= 0 vector in L = {x ∈ Z
m : xt · A = 0 [q]}:

det L = qn (with high prob.), dim L = m

Lattice reduction on L

γ · q n
m needs to be ≤ β

Cost grows as (m/ log γ)O(m/ log γ).

⇒ Look for minm′≤m x log x with x = m′

log β− n
m′

log q

If m is large enough, take m′ ≈
√
n log q/ log β.

Cost is ≤ exp(O(n log q
log2 β

· log n log q

log2 β
))
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LLL as sandpile flattening [MadVal10]

(Recall that xi = log ‖b∗
i ‖ = log rii , for i ≤ n.)

The LLL sandpile flattening strategy is local.
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Convergence of LLL

The LLL potential

Π :=
∑

i≤n(n − i + 1) · xi .

It is the weighted amount of sand to be moved to the
right.

For each swap, it decreases by at least a constant.

Number of loop iterations of LLL

There are O(n2 log ‖B‖) loop iterations before completion.
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Damien Stehlé Lattice reduction 07/07/2016 30/37



Background on lattices Lattice reduction framework BKZ SIS LLL Conclusion

Cost of LLL

Text-book LLL:

O(n2 log ‖B‖) loop iterations

O(n2) arithmetic operations per iteration

GSO rationals have bit-lengths O(n log ‖B‖)
⇒ Cost is Õ(n5 log2 ‖B‖)

Improvements:

Use floating-point GSO [NgSt05]:

Õ(n4 log2 ‖B‖)
Recursively use approximations for B (like fast gcd)
[NoStVi11]:

Õ(n5 log ‖B‖)
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Faster LLL-type reduction [NeSt16]

Ideas:

Use a BKZ-like global strategy

In the k-dimensional blocks, make a recursive call

Make the blocks overlap by half only

At the bottom of the recursion, use a quasi-linear
2-dimensional algorithm.

This is solving a local-global dilemma:

Global sandpile flattening strategy

Stay local, so that working dimension is small
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Faster LLL-type reduction

Analysis:

Using Neumaier’s parameter: O(n2/k2) tours.

In a tour, we have O(n/k) recursive calls

Size-reduction and GSO update after a call:
O(n2k) arithmetic operations

Number of arithmetic operations (including 2-dimensional

reductions): Õ(n3).

Total cost: Õ(n4 log ‖B‖)
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Roadmap

1 Background on lattices

2 The lattice reduction framework

3 Strong but slow: BKZ

4 Solving the SIS problem

5 Weak but fast: LLL
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What to remember from this talk?

Lattice reduction is used to solve the approximate variants of
SVP/uSVP/HSVP/SIVP/...

The process is driven by the rii ’s

Time 2k ⇔ approx. factor γ = kO(n/k)

or... approx. factor γ in time (1 + n/ log γ)O(n/ log γ)
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What to remember from this talk?

Two approaches to flatten the sandpile.

Global (BKZ, fast LLL): O(n3 log log ‖B‖) iterations.
Local (LLL): O(n2 log ‖B‖) iterations.

Global approach seems superior

But in practice, local remains better for LLL reduction

And also global kicks in only if there are many iterations,
whereas local may be cheaper for some instances.
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Open problems

1 Practice

2 Understand the relationship between global and local flattening

3 Faster LLL-type reduction: Õ(nω log ‖B‖)?
4 Go beyond this framework:

Why sticking to the input lattice?
Why progressive improvements?

5 Find a quantum acceleration

Main open problem

Achieve approx. factor γ in time
(

n
log γ

)o( n
log γ

)
, for some γ.
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4 Go beyond this framework:

Why sticking to the input lattice?
Why progressive improvements?

5 Find a quantum acceleration

Main open problem

Achieve approx. factor γ in time
(

n
log γ

)o( n
log γ

)
, for some γ.
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