# An overview of lattice reduction algorithms

#### Damien Stehlé

ENS de Lyon

July 7th 2016



Context 1: cryptanalysis of lattice-based cryptosystems.

- NTRU (encryption & signature)
- All cryptosystems based on SIS and LWE and their ring variants
- $\Rightarrow$  Huge dims, small entries, very expensive task

- Variants of RSA (with Coppersmith's method)
- ightarrow Large dims, huge entries, much less costly (

Context 1: cryptanalysis of lattice-based cryptosystems.

- NTRU (encryption & signature)
- All cryptosystems based on SIS and LWE and their ring variants
- $\Rightarrow$  Huge dims, small entries, very expensive task

- Variants of RSA (with Coppersmith's method)
- $\Rightarrow$  Large dims, huge entries, much less costly.

Context 1: cryptanalysis of lattice-based cryptosystems.

- NTRU (encryption & signature)
- All cryptosystems based on SIS and LWE and their ring variants
- $\Rightarrow$  Huge dims, small entries, very expensive task

- Variants of RSA (with Coppersmith's method)
- $\Rightarrow$  Large dims, huge entries, much less costly

Context 1: cryptanalysis of lattice-based cryptosystems.

- NTRU (encryption & signature)
- All cryptosystems based on SIS and LWE and their ring variants
- $\Rightarrow$  Huge dims, small entries, very expensive task

- Variants of RSA (with Coppersmith's method)
- $\Rightarrow\,$  Large dims, huge entries, much less costly

| Background on lattices | Lattice reduction framework | BKZ | LLL | Conclusion |
|------------------------|-----------------------------|-----|-----|------------|
| Roadmap                |                             |     |     |            |

#### Goal of this talk

An introductive overview on lattice reduction algorithms

#### Background on lattices

- The lattice reduction framework
- Strong but slow: BKZ
- Solving the SIS problem
- Weak but fast: LLL

Conclusion

# Euclidean lattices

Lattice 
$$\equiv \left\{ \sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\}$$
,  
for linearly indep.  $\mathbf{b}_i$ 's in  $\mathbb{R}^n$ ,  
referred to as **lattice basis**

Bases are **not unique**, but can be obtained from one another by integer transforms of determinant ±1:

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

Lattice reduction

Find a short basis, given an arbitrary one



## Euclidean lattices

Lattice 
$$\equiv \left\{ \sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\}$$
,  
for linearly indep.  $\mathbf{b}_i$ 's in  $\mathbb{R}^n$ ,  
referred to as **lattice basis**

Bases are **not unique**, but can be obtained from one another by integer transforms of determinant  $\pm 1$ :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

Lattice reduction

Find a short basis, given an arbitrary one



## Euclidean lattices

Lattice 
$$\equiv \left\{ \sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\}$$
,  
for linearly indep.  $\mathbf{b}_i$ 's in  $\mathbb{R}^n$ ,  
referred to as **lattice basis**

Bases are **not unique**, but can be obtained from one another by integer transforms of determinant  $\pm 1$ :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

Lattice reduction

Find a short basis, given an arbitrary one



Minimum:  $\lambda(L) = \min (\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$ 

**Determinant:** det  $L = |\det(\mathbf{b}_i)_i|$ , for any basis

#### Minkowski theorem

$$\lambda(L) \leq \sqrt{n} \cdot (\det L)^{\frac{1}{n}}$$
, for any L of dim n

#### Lattice reduction



#### **Minimum:**

$$\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$$

#### **Determinant:**

det  $L = |\det(\mathbf{b}_i)_i|$ , for any basis

#### Minkowski theorem

$$\lambda(L) \leq \sqrt{n} \cdot (\det L)^{\frac{1}{n}}$$
, for any L of dim n

#### Lattice reduction



**Minimum:** 

 $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$ 

#### **Determinant:**

det  $L = |\det(\mathbf{b}_i)_i|$ , for any basis

#### Minkowski theorem

$$\lambda(L) \leq \sqrt{n} \cdot (\det L)^{\frac{1}{n}}$$
, for any L of dim n

#### Lattice reduction



Minimum:  $\lambda(L) = \min (||\mathbf{b}|| : \mathbf{b} \in L \setminus \mathbf{0})$ Determinant:  $\det L = |\det(\mathbf{b}_i)_i|$ , for any basis

Minkowski theorem

$$\lambda(L) \leq \sqrt{n} \cdot (\det L)^{\frac{1}{n}}$$
, for any L of dim n

#### Lattice reduction



Minimum:  $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0})$ **Determinant:** det  $L = |\det(\mathbf{b}_i)_i|$ , for any basis Minkowski theorem  $\lambda(L) \leq \sqrt{n} \cdot (\det L)^{\frac{1}{n}}$ , for any L of dim n Lattice reduction Find a basis that is short compared to  $\lambda(L)$  and/or  $(\det L)^{\frac{1}{n}}$ 

## Computational problems on lattices

The Shortest Vector Problem:  $SVP_{\gamma}$ 

Given a basis of *L*, find  $\mathbf{b} \in L$  s.t.:  $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$ 

Effective Minkowski theorem:  $\mathsf{HSVP}_\gamma$ 

Given a basis of L, find  $\mathbf{b} \in L$  s.t.:  $0 < \|\mathbf{b}\| \le \gamma \cdot (\det L)^{rac{1}{n}}$ 

Many other problems:  $BDD_{\gamma}$ ,  $CVP_{\gamma}$ ,  $uSVP_{\gamma}$ ,  $SIVP_{\gamma}$ , etc.

## Computational problems on lattices

The Shortest Vector Problem:  $SVP_{\gamma}$ 

Given a basis of *L*, find  $\mathbf{b} \in L$  s.t.:  $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$ 

Effective Minkowski theorem:  $HSVP_{\gamma}$ 

Given a basis of L, find  $\mathbf{b} \in L$  s.t.:  $0 < \|\mathbf{b}\| \le \gamma \cdot (\det L)^{\frac{1}{n}}$ 

Many other problems:  $BDD_{\gamma}$ ,  $CVP_{\gamma}$ ,  $uSVP_{\gamma}$ ,  $SIVP_{\gamma}$ , etc.

## Computational problems on lattices

The Shortest Vector Problem:  $SVP_{\gamma}$ 

Given a basis of *L*, find  $\mathbf{b} \in L$  s.t.:  $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$ 

Effective Minkowski theorem:  $HSVP_{\gamma}$ 

Given a basis of L, find  $\mathbf{b} \in L$  s.t.:  $0 < \|\mathbf{b}\| \le \gamma \cdot (\det L)^{\frac{1}{n}}$ 

Many other problems:  $BDD_{\gamma}$ ,  $CVP_{\gamma}$ ,  $uSVP_{\gamma}$ ,  $SIVP_{\gamma}$ , etc.



• SVP<sub> $\gamma$ </sub> is NP-hard for  $\gamma = O(1)$  (under random. red.) [Ajt98] • SVP<sub> $\gamma$ </sub>, HSVP<sub> $\gamma$ </sub>, BDD<sub> $\gamma$ </sub>... in P for  $\gamma = 2^{\Omega(n \frac{\log \log n}{\log n})}$  [Sch87,MiVo10]

When  $\gamma \geq n^{\Omega(1)}$ , the cost of the best known algorithm is:

$$\mathcal{P}oly(m, \log \|B\|) \cdot \left(1 + rac{n}{\log \gamma}\right)^{O\left(1 + rac{n}{\log \gamma}\right)}.$$

For  $\gamma \leq \mathcal{P}oly(n)$ , the cost is  $\mathcal{P}oly(m, \log \|B\|) \cdot 2^{O(n)}$ .



SVP<sub>γ</sub> is NP-hard for γ = O(1) (under random. red.) [Ajt98]
 SVP<sub>γ</sub>, HSVP<sub>γ</sub>, BDD<sub>γ</sub>... in P for γ = 2<sup>Ω(n log log n</sup>) [Sch87,MiVo10]

When  $\gamma \geq n^{\Omega(1)}$ , the cost of the best known algorithm is:

$$\mathcal{P}oly(m, \log \|B\|) \cdot \left(1 + \frac{n}{\log \gamma}\right)^{O\left(1 + \frac{n}{\log \gamma}\right)}.$$

For  $\gamma \leq \mathcal{P}oly(n)$ , the cost is  $\mathcal{P}oly(m, \log ||B||) \cdot 2^{O(n)}$ .

| Background on lattices | Lattice reduction framework | BKZ | LLL | Conclusion |
|------------------------|-----------------------------|-----|-----|------------|
| Roadmap                |                             |     |     |            |

- Background on lattices
- **2** The lattice reduction framework
- Strong but slow: BKZ
- Solving the SIS problem
- Weak but fast: LLL

# From $n^2$ to n(n+1)/2 variables: QR-factorisation

#### Goal of lattice reduction

Given  $B \in \mathbb{R}^{n \times n}$  full-rank, find  $U \in GL_n(\mathbb{Z})$  s.t.  $B \cdot U$  has small coeffs, i.e., its columns have small euclidean norms

As  $\|\cdot\|$  is invariant under rotations, we may work on triangular matrices:



(QR-factorisation)

•  $r_{11}$  is the norm of **b**<sub>1</sub>

•  $r_{ii}$  is the norm of the proj. of **b**<sub>i</sub> orthogonally to  $(\mathbf{b}_j)_{j < i}$ 

• This is equivalent to Gram-Schmidt Orthogonalisation

Damien Stehlé

Lattice reduction

# From $n^2$ to n(n+1)/2 variables: QR-factorisation

#### Goal of lattice reduction

Given  $B \in \mathbb{R}^{n \times n}$  full-rank, find  $U \in GL_n(\mathbb{Z})$  s.t.  $B \cdot U$  has small coeffs, i.e., its columns have small euclidean norms

As  $\|\cdot\|$  is invariant under rotations, we may work on triangular matrices:



(QR-factorisation)

r<sub>11</sub> is the norm of b<sub>1</sub>

•  $r_{ii}$  is the norm of the proj. of **b**<sub>i</sub> orthogonally to  $(\mathbf{b}_j)_{j < i}$ 

• This is equivalent to Gram-Schmidt Orthogonalisation

# From $n^2$ to n(n+1)/2 variables: QR-factorisation

#### Goal of lattice reduction

Given  $B \in \mathbb{R}^{n \times n}$  full-rank, find  $U \in GL_n(\mathbb{Z})$  s.t.  $B \cdot U$  has small coeffs, i.e., its columns have small euclidean norms

As  $\|\cdot\|$  is invariant under rotations, we may work on triangular matrices:



(QR-factorisation)

- $r_{11}$  is the norm of  $\mathbf{b}_1$
- $r_{ii}$  is the norm of the proj. of  $\mathbf{b}_i$  orthogonally to  $(\mathbf{b}_j)_{j < i}$
- This is equivalent to Gram-Schmidt Orthogonalisation

Damien Stehlé

Background on lattices Lattice reduction framework BKZ SIS LLL Conclusion
QR-factorisation and GSO

 $\mathsf{QR}\xspace$  is equivalent to Gram-Schmidt Orthogonalisation:

- For all *i*, **b**<sup>\*</sup><sub>i</sub> = **b**<sub>i</sub> − ∑<sub>j < i</sub> µ<sub>ij</sub>**b**<sup>\*</sup><sub>j</sub> is the projection of **b**<sub>i</sub> orthogonally to Span<sub>ℝ</sub>(**b**<sub>1</sub>,...,**b**<sub>i-1</sub>).
- We have  $\|\mathbf{b}_i^*\| = r_{ii}$  and  $\mu_{ij} = \frac{r_{ji}}{r_{jj}}$  for i > j.



#### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t.  $R \cdot U$  has a small R-factor



But other coefficients of R may have changed: If they were small, they may not be small anymore..

#### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t.  $R \cdot U$  has a small R-factor



But other coefficients of R may have changed: If they were small, they may not be small anymore..

#### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t.  $R \cdot U$  has a small R-factor



But other coefficients of *R* may have changed: If they were small, they may not be small anymore..

#### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t.  $R \cdot U$  has a small R-factor



But other coefficients of R may have changed: If they were small, they may not be small anymore...

## From n(n+1)/2 to *n* variables: size-reduction



This modifies the top of the *j*-th column.  $\Rightarrow$  Proceed from bottom to top.

#### Size-reduced basis

A basis is said size-reduced if  $|r_{ij}| \le r_{ii}/2$  for all i < j

Size-reduction grants control of the off-diagonal coeffs
It can be performed with *Poly(n*, log ||*B*||) cost

## From n(n+1)/2 to *n* variables: size-reduction

This modifies the top of the j-th column.

 $\Rightarrow$  Proceed from bottom to top.

#### Size-reduced basis

A basis is said size-reduced if  $|r_{ij}| \le r_{ii}/2$  for all i < j

- Size-reduction grants control of the off-diagonal coeffs
- It can be performed with  $\mathcal{P}oly(n, \log \|B\|)$  cost

$$\begin{bmatrix} \ddots & \vdots & \dots & \vdots & \dots \\ & r_{ii} & \dots & r_{ij} & \dots \\ & & \ddots & \vdots & \dots \\ & & & r_{jj} & \dots \\ & & & & \ddots \end{bmatrix} \cdot \begin{bmatrix} \ddots & & & & \\ & 1 & -\lfloor \frac{r_{ij}}{r_{ii}} \rceil & & \\ & & \ddots & & \\ & & & 1 & \\ & & & & \ddots \end{bmatrix}$$

This modifies the top of the j-th column.

 $\Rightarrow$  Proceed from bottom to top.

#### Size-reduced basis

A basis is said size-reduced if  $|r_{ij}| \le r_{ii}/2$  for all i < j

- Size-reduction grants control of the off-diagonal coeffs
- It can be performed with  $\mathcal{P}oly(n, \log \|B\|)$  cost

## Where are we now?

#### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t. the R-factor of  $R \cdot U$  has small diagonal coeffs

What does it mean, as the product of the  $r_{ii}$ 's is constant? We want to

- make the first r<sub>ii</sub>'s small,
- make the *r<sub>ii</sub>*'s balanced, or preventing them from decreasing fast

## Where are we now?

#### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t. the R-factor of  $R \cdot U$  has small diagonal coeffs

What does it mean, as the product of the  $r_{ii}$ 's is constant? We want to

- make the first r<sub>ii</sub>'s small,
- make the  $r_{ii}$ 's balanced, or preventing them from decreasing fast

## The best we can do: HKZ

#### HKZ-reduction

R up-triangular is HKZ-reduced if

• 
$$r_{11} = \lambda(L)$$
 with  $L = \sum_i \mathbb{Z}\mathbf{r}_i$ 

• and  $(r_{ij})_{i,j>1}$  is HKZ-reduced

In the worst case, we have, for all  $i \leq n$ :

$$r_{jj} \approx \sqrt{n-i+1} \cdot \left(\prod_{j=i}^{n} r_{jj}\right)^{\frac{1}{n-i+1}}$$

Fixing  $r_{nn}$  fixes the other  $r_{ii}$ 's. As this is all multiplicative, we use  $x_i = \log r_{ii}$  instead

## The best we can do: HKZ

#### HKZ-reduction

R up-triangular is HKZ-reduced if

• 
$$r_{11} = \lambda(L)$$
 with  $L = \sum_i \mathbb{Z}\mathbf{r}_i$ 

• and  $(r_{ij})_{i,j>1}$  is HKZ-reduced

In the worst case, we have, for all  $i \leq n$ :

$$r_{ii} \approx \sqrt{n-i+1} \cdot \left(\prod_{j=i}^n r_{jj}\right)^{\frac{1}{n-i+1}}$$

Fixing  $r_{nn}$  fixes the other  $r_{ii}$ 's. As this is all multiplicative, we use  $x_i = \log r_{ii}$  instead.

### The best we can do: HKZ

#### **HKZ-reduction**

R up-triangular is HKZ-reduced if

• 
$$r_{11} = \lambda(L)$$
 with  $L = \sum_i \mathbb{Z} \mathbf{r}_i$ 

• and  $(r_{ij})_{i,j>1}$  is HKZ-reduced
Background on lattices Lattice reduction framework BKZ SIS LLL Conclusion

### The best we can do: HKZ

#### **HKZ-reduction**

R up-triangular is HKZ-reduced if

• 
$$r_{11} = \lambda(L)$$
 with  $L = \sum_i \mathbb{Z} \mathbf{r}_i$ 

• and  $(r_{ij})_{i,j>1}$  is HKZ-reduced

### Worst-case HKZ profile:

$$\begin{array}{rcl} x_i &=& \log r_{ii} \\ &=& O(\log^2(n-i+1)) \end{array}$$

Cost of HKZ:

Computationally eq. to SVP
Time & space 2<sup>O(n)</sup>



Background on lattices Lattice reduction framework BKZ SIS LLL Conclusion

## The best we can do: HKZ

#### **HKZ-reduction**

R up-triangular is HKZ-reduced if

• 
$$r_{11} = \lambda(L)$$
 with  $L = \sum_i \mathbb{Z} \mathbf{r}_i$ 

• and  $(r_{ij})_{i,j>1}$  is HKZ-reduced

### Worst-case HKZ profile:

$$egin{array}{rl} x_i &=& \log r_{ii} \ &=& O(\log^2(n-i+1)) \end{array}$$

Cost of HKZ:

- Computationally eq. to SVP
- Time & space 2<sup>O(n)</sup>



## Lattice reduction: the rules of the game

#### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t. the R-factor of  $R \cdot U$  has small diagonal coeffs

### HKZ too costly... What can we do?

Swap two consecutive vectors s.t. r<sub>i+1,i+1</sub> ≪ r<sub>i,i</sub> [LLL82]
 Balance the diag. coeffs locally by applying lattice reduction (e.g., HKZ) to a diag. submatrix of R [Sch87]



## Lattice reduction: the rules of the game

### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t. the R-factor of  $R \cdot U$  has small diagonal coeffs

### HKZ too costly... What can we do?

- Swap two consecutive vectors s.t.  $r_{i+1,i+1} \ll r_{i,i}$  [LLL82]
- Balance the diag. coeffs locally by applying lattice reduction (e.g., HKZ) to a diag. submatrix of R [Sch87]



## Lattice reduction: the rules of the game

#### Goal of lattice reduction

Given  $R \in \mathbb{R}^{n \times n}$  up-triangular, find  $U \in GL_n(\mathbb{Z})$ s.t. the R-factor of  $R \cdot U$  has small diagonal coeffs

### HKZ too costly... What can we do?

- Swap two consecutive vectors s.t.  $r_{i+1,i+1} \ll r_{i,i}$  [LLL82]
- Balance the diag. coeffs locally by applying lattice reduction (e.g., HKZ) to a diag. submatrix of R [sch87]



| Background on lattices | Lattice reduction framework | BKZ | LLL | Conclusion |
|------------------------|-----------------------------|-----|-----|------------|
| Roadmap                |                             |     |     |            |

- Background on lattices
- The lattice reduction framework
- Strong but slow: BKZ
- Solving the SIS problem
- Weak but fast: LLL

# BKZ: A global reduction approach

[Sch87,ScEu91]: Do HKZ on k-dim. diagonal submatrices of R

#### $BKZ_k$ , simplified version

Input:  $R \in \mathbb{R}^{n \times n}$  up-triangular Repeat ... times For *i* from 1 to n - k + 1 do HKZ-reduce the *k*-dim sub-matrix of *R* starting at  $r_{ii}$ Update the R-factor and size-reduce it

- How many iterations?
- What is the output quality?

# BKZ: A global reduction approach

[Sch87,ScEu91]: Do HKZ on k-dim. diagonal submatrices of R

#### $BKZ_k$ , simplified version

Input:  $R \in \mathbb{R}^{n \times n}$  up-triangular Repeat ... times For *i* from 1 to n - k + 1 do HKZ-reduce the *k*-dim sub-matrix of *R* starting at  $r_{ii}$ Update the R-factor and size-reduce it

- How many iterations?
- What is the output quality?



















$$X = (x_1, \dots, x_n)^T$$
  

$$X_{0.5} \leftarrow A_1 X$$
  

$$X_1 \leftarrow A_1 X + \Gamma_1$$
  

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

 $X_j = A_j X_j + \Gamma_j$ with j = n - k + 1



$$X = (x_1, \dots, x_n)^T$$
$$X_{0.5} \leftarrow A_1 X$$
$$X_1 \leftarrow A_1 X + \Gamma_1$$
$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

 $X_j = A_j X_j + \Gamma_j$ with j = n - k + 1



$$X = (x_1, \dots, x_n)^T$$
  

$$X_{0.5} \leftarrow A_1 X$$
  

$$X_1 \leftarrow A_1 X + \Gamma_1$$
  

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

 $X_j = A_j X_j + \Gamma_j$ with j = n - k + 1



$$X = (x_1, \dots, x_n)^T$$
  

$$X_{0.5} \leftarrow A_1 X$$
  

$$X_1 \leftarrow A_1 X + \Gamma_1$$
  

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

 $X_j = A_j X_j + \Gamma_j$ with j = n - k + 1



$$X = (x_1, \dots, x_n)^T$$
  

$$X_{0.5} \leftarrow A_1 X$$
  

$$X_1 \leftarrow A_1 X + \Gamma_1$$
  

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$
  

$$\dots$$
  

$$X_j = A_j X_j + \Gamma_j$$
  
with  $j = n - k + 1$ 



$$X = (x_1, \dots, x_n)^T$$
  

$$X_{0.5} \leftarrow A_1 X$$
  

$$X_1 \leftarrow A_1 X + \Gamma_1$$
  

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$
  

$$\dots$$
  

$$X_j = A_j X_j + \Gamma_j$$
  
with  $j = n - k + 1$ 

Discrete-time affine dynamical system, for one loop iteration

 $X \leftarrow AX + \Gamma$ 

Reducedness of the output ⇒ fixed points

Speed of convergence ⇒ eigenvalues of A<sup>T</sup>A
 ⇒ the convergence is geometric, for the x<sub>i</sub>'s
 ⇒ for fixed k and n, there are O(log log ||B||) iteration

Discrete-time affine dynamical system, for one loop iteration

### $X \leftarrow AX + \Gamma$

● Reducedness of the output ⇒ fixed points

Speed of convergence ⇒ eigenvalues of A<sup>T</sup>A
 ⇒ the convergence is geometric, for the x<sub>i</sub>'s
 ⇒ for fixed k and n, there are O(log log ||B||) iterat

Discrete-time affine dynamical system, for one loop iteration

 $X \leftarrow AX + \Gamma$ 

● Reducedness of the output ⇒ fixed points



Discrete-time affine dynamical system, for one loop iteration







 $\Rightarrow$  the convergence is geometric, for the  $x_i$ 's

 $\Rightarrow$  for fixed k and n, there are  $O(\log \log ||B||)$  iterations

Analysis of BKZ [HaPuSt11, Neumaier16]

One can solve  $X = AX + \Gamma$ , find the eigenvalues of  $A^T A$ , and remove the regularity assumption... cumbersome...



- $(\sum_{j \le i} x_j)/i$  is a smoothed proxy for  $x_i$ .
- Taking i = 1 gives  $\|\mathbf{b}_1\| \le \exp(\nu)^{n-1} \cdot (\det B)^{1/n}$ .
- The definition is justified by the fact we expect the x<sub>i</sub>'s to decrease linearly after reduction

Analysis of BKZ [HaPuSt11, Neumaier16]

One can solve  $X = AX + \Gamma$ , find the eigenvalues of  $A^T A$ , and remove the regularity assumption... cumbersome...

Neumaier's reducedness parameter  

$$\nu := \max_{i \le n-k} \frac{1}{n-i} \left( \frac{\sum_{j \le i} x_j}{i} - \frac{\sum_{j \le n} x_j}{n} \right).$$

- $(\sum_{j \le i} x_j)/i$  is a smoothed proxy for  $x_i$ .
- Taking i=1 gives  $\|\mathbf{b}_1\| \leq \exp(
  u)^{n-1} \cdot (\det B)^{1/n}$ .
- The definition is justified by the fact we expect the x<sub>i</sub>'s to decrease linearly after reduction

Analysis of BKZ [HaPuSt11,Neumaier16]

One can solve  $X = AX + \Gamma$ , find the eigenvalues of  $A^T A$ , and remove the regularity assumption... cumbersome...

Neumaier's reducedness parameter  

$$\nu := \max_{i \le n-k} \frac{1}{n-i} \left( \frac{\sum_{j \le i} x_j}{i} - \frac{\sum_{j \le n} x_j}{n} \right).$$

- $(\sum_{j\leq i} x_j)/i$  is a smoothed proxy for  $x_i$ .
- Taking i = 1 gives  $\|\mathbf{b}_1\| \le \exp(\nu)^{n-1} \cdot (\det B)^{1/n}$ .
- The definition is justified by the fact we expect the x<sub>i</sub>'s to decrease linearly after reduction

| Background on lattices | Lattice reduction framework | BKZ | LLL | Conclusion |
|------------------------|-----------------------------|-----|-----|------------|
| Cost of BKZ            |                             |     |     |            |

Neumaier's reducedness parameter

$$\nu := \max_{i \leq n-k} \frac{1}{n-i} \left( \frac{\sum_{j \leq i} x_j}{i} - \frac{\sum_{j \leq n} x_j}{n} \right).$$

#### Cost of BKZ

At every tour before reaching the fix-point:

$$u$$
 decreases by a factor  $\leq 1 - k^2/n^2$ .

 $\Rightarrow$  BKZ requires  $O(n \cdot \frac{n^2}{k^2} \cdot \log \log ||B||)$  calls to an SVP oracle to (essentially) reach the fix-point.

Neumaier's parameter also allows to analyze variants of BKZ, including SDBKZ [MiWa16].

| Background on lattices | Lattice reduction framework | BKZ | LLL | Conclusion |
|------------------------|-----------------------------|-----|-----|------------|
| Cost of BKZ            |                             |     |     |            |

Neumaier's reducedness parameter

$$\nu := \max_{i \leq n-k} \frac{1}{n-i} \left( \frac{\sum_{j \leq i} x_j}{i} - \frac{\sum_{j \leq n} x_j}{n} \right).$$

#### Cost of BKZ

At every tour before reaching the fix-point:

$$\nu$$
 decreases by a factor  $\leq 1 - k^2/n^2$ .

 $\Rightarrow$  BKZ requires  $O(n \cdot \frac{n^2}{k^2} \cdot \log \log ||B||)$  calls to an SVP oracle to (essentially) reach the fix-point.

Neumaier's parameter also allows to analyze variants of BKZ, including SDBKZ [MiWa16].

Damien Stehlé

| Background on lattices | Lattice reduction framework | BKZ | SIS | LLL | Conclusion |
|------------------------|-----------------------------|-----|-----|-----|------------|
| Roadmap                |                             |     |     |     |            |

- Background on lattices
- The lattice reduction framework
- Strong but slow: BKZ
- Solving the SIS problem
- Weak but fast: LLL

| Background | d on lattices | Lattice reduction framework | BKZ | SIS | LLL | Conclusion |
|------------|---------------|-----------------------------|-----|-----|-----|------------|
| SIS        | [Ajt96]       |                             |     |     |     |            |

#### The Small Integer Solution Problem

Given a uniform  $A \in \mathbb{Z}_q^{m \times n}$ , find  $\mathbf{x} \in \mathbb{Z}^m$  s.t.:  $0 < \|\mathbf{x}\| \le \beta$  and  $\mathbf{x}^t \cdot A = \mathbf{0} \mod q$ .

- Hash functions [Ajt96,LyMi08,PeRo08]
- Commitment scheme [KeTaXa08]
- Digital signatures [GePeVa08,Boy10,Lyu12]

And many more.

| Backgroun | d on lattices | Lattice reduction framework | BKZ | SIS | LLL | Conclusion |
|-----------|---------------|-----------------------------|-----|-----|-----|------------|
| SIS       | [Ajt96]       |                             |     |     |     |            |

#### The Small Integer Solution Problem

Given a uniform  $A \in \mathbb{Z}_q^{m \times n}$ , find  $\mathbf{x} \in \mathbb{Z}^m$  s.t.:  $0 < \|\mathbf{x}\| \le \beta$  and  $\mathbf{x}^t \cdot A = \mathbf{0} \mod q$ .

- Hash functions [Ajt96,LyMi08,PeRo08]
- Commitment scheme [KeTaXa08]
- Digital signatures [GePeVa08,Boy10,Lyu12]

And many more.

# Viewing SIS as a lattice problem

Given 
$$A \in \mathbb{Z}_q^{m imes n}$$
, find **x** s.t.:  $0 < \|\mathbf{x}\| \le \beta$  and  $\mathbf{x}^t \cdot A = \mathbf{0}$  [q]

Short  $\neq 0$  vector in  $L = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^t \cdot A = \mathbf{0} [q] \}$ : det  $L = q^n$  (with high prob.), dim L = m

We may optimize over  $m' \leq m$ :

- Less freedom, larger smallest solutions
- But smaller lattice dimension

## Viewing SIS as a lattice problem

Given 
$$A \in \mathbb{Z}_q^{m imes n}$$
, find **x** s.t.:  $0 < \|\mathbf{x}\| \le \beta$  and  $\mathbf{x}^t \cdot A = \mathbf{0}$  [q]

Short 
$$\neq 0$$
 vector in  $L = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^t \cdot A = \mathbf{0} [q] \}$ :  
det  $L = q^n$  (with high prob.), dim  $L = m$ 

We may optimize over  $m' \leq m$ :

- Less freedom, larger smallest solutions
- But smaller lattice dimension
# Viewing SIS as a lattice problem

Given 
$$A \in \mathbb{Z}_q^{m imes n}$$
, find **x** s.t.:  $0 < \|\mathbf{x}\| \le \beta$  and  $\mathbf{x}^t \cdot A = \mathbf{0}$  [q]

Short 
$$\neq 0$$
 vector in  $L = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^t \cdot A = \mathbf{0} [q] \}$ :  
det  $L = q^n$  (with high prob.), dim  $L = m$ 

We may optimize over  $m' \leq m$ :

- Less freedom, larger smallest solutions
- But smaller lattice dimension

Short 
$$\neq 0$$
 vector in  $L = \{\mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^t \cdot A = \mathbf{0} [q]\}:$   
det  $L = q^n$  (with high prob.), dim  $L = m$ 

#### Lattice reduction on *L*

$$\gamma \cdot q^{rac{m}{m}}$$
 needs to be  $\leq eta$   
Cost grows as  $(m/\log \gamma)^{O(m/\log \gamma)}$ 

$$\Rightarrow \text{Look for } \min_{m' \le m} x \log x \text{ with } x = \frac{m'}{\log \beta - \frac{n}{m'} \log q}$$

If *m* is large enough, take  $m' \approx \sqrt{n \log q} / \log \beta$ . Cost is  $\leq \exp(O(\frac{n \log q}{1-2}) \log \frac{n \log q}{1-2})$ 

Short 
$$\neq 0$$
 vector in  $L = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^t \cdot A = \mathbf{0} [q] \}$ :  
det  $L = q^n$  (with high prob.), dim  $L = m$ 

#### Lattice reduction on L

$$\gamma \cdot q^{rac{n}{m}}$$
 needs to be  $\leq eta$   
Cost grows as  $(m/\log \gamma)^{O(m/\log \gamma)}$ 

$$\Rightarrow \text{Look for } \min_{m' \le m} x \log x \text{ with } x = \frac{m'}{\log \beta - \frac{m}{m'} \log q}$$

If *m* is large enough, take  $m' \approx \sqrt{n \log q} / \log \beta$ .

 $\mathsf{Cost} \text{ is } \leq \exp(O(\tfrac{n\log q}{\log^2\beta} \cdot \log \tfrac{n\log q}{\log^2\beta}))$ 

Short 
$$\neq 0$$
 vector in  $L = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^t \cdot A = \mathbf{0} [q] \}$ :  
det  $L = q^n$  (with high prob.), dim  $L = m$ 

#### Lattice reduction on L

$$\gamma \cdot q^{rac{n}{m}}$$
 needs to be  $\leq eta$   
Cost grows as  $(m/\log \gamma)^{O(m/\log \gamma)}$ 

$$\Rightarrow \text{Look for } \min_{m' \le m} x \log x \text{ with } x = \frac{m'}{\log \beta - \frac{m}{m'} \log q}$$

If *m* is large enough, take  $m' \approx \sqrt{n \log q} / \log \beta$ .

Cost is  $\leq \exp(O(\frac{n\log q}{\log^2 \beta} \cdot \log \frac{n\log q}{\log^2 \beta}))$ 

Short 
$$\neq 0$$
 vector in  $L = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^t \cdot A = \mathbf{0} [q] \}$ :  
det  $L = q^n$  (with high prob.), dim  $L = m$ 

#### Lattice reduction on L

$$\gamma \cdot q^{rac{n}{m}}$$
 needs to be  $\leq eta$   
Cost grows as  $(m/\log \gamma)^{O(m/\log \gamma)}$ 

$$\Rightarrow \text{Look for } \min_{m' \le m} x \log x \text{ with } x = \frac{m'}{\log \beta - \frac{n}{m'} \log q}$$

If *m* is large enough, take 
$$m' \approx \sqrt{n \log q / \log \beta}$$
.

$$\mathsf{Cost} \text{ is } \leq \exp(O(\tfrac{n\log q}{\log^2\beta} \cdot \log \tfrac{n\log q}{\log^2\beta}))$$

| Background on lattices | Lattice reduction framework | BKZ | LLL | Conclusion |
|------------------------|-----------------------------|-----|-----|------------|
|                        |                             |     |     |            |
| Roadmap                |                             |     |     |            |

- Background on lattices
- The lattice reduction framework
- Strong but slow: BKZ
- Solving the SIS problem
- Weak but fast: LLL

(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is **local**.

(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



(Recall that 
$$x_i = \log \|\mathbf{b}_i^*\| = \log r_{ii}$$
, for  $i \leq n$ .)

The LLL sandpile flattening strategy is local.

LLL: if 
$$r_{ii} \gg r_{i+1,i+1}$$
, do  $\mathbf{b}_i \leftrightarrow \mathbf{b}_{i+1}$ .

This decreases  $r_{ii}$  by at least a constant factor.



#### Convergence of LLL

#### The LLL potential

$$\Pi := \sum_{i \leq n} (n-i+1) \cdot x_i.$$

#### The LLL potential

$$\Pi := \sum_{i \leq n} (n-i+1) \cdot x_i.$$

- It is the weighted amount of sand to be moved to the right.
- For each swap, it decreases by at least a constant.

#### Number of loop iterations of LLL

There are  $O(n^2 \log ||B||)$  loop iterations before completion.

The LLL potential

$$\Pi := \sum_{i \leq n} (n-i+1) \cdot x_i.$$

- It is the weighted amount of sand to be moved to the right.
- For each swap, it decreases by at least a constant.

#### Number of loop iterations of LLL

There are  $O(n^2 \log ||B||)$  loop iterations before completion.

Text-book LLL:

- $O(n^2 \log ||B||)$  loop iterations
- $O(n^2)$  arithmetic operations per iteration
- GSO rationals have bit-lengths  $O(n \log ||B||)$
- $\Rightarrow$  Cost is  $\widetilde{O}(n^5 \log^2 \|B\|)$

Improvements:

• Use floating-point GSO [NgSt05]:

 $\widetilde{O}(n^4 \log^2 \|B\|)$ 

 Recursively use approximations for B (like fast gcd) [NoStVi11]:

 $\widetilde{O}(n^5 \log \|B\|)$ 

Text-book LLL:

- $O(n^2 \log ||B||)$  loop iterations
- $O(n^2)$  arithmetic operations per iteration
- GSO rationals have bit-lengths  $O(n \log ||B||)$
- $\Rightarrow$  Cost is  $\widetilde{O}(n^5 \log^2 \|B\|)$

Improvements:

• Use floating-point GSO [NgSt05]:

 $\widetilde{O}(n^4 \log^2 \|B\|)$ 

• Recursively use approximations for *B* (like fast gcd) [NoStVi11]:

Text-book LLL:

- $O(n^2 \log ||B||)$  loop iterations
- $O(n^2)$  arithmetic operations per iteration
- GSO rationals have bit-lengths  $O(n \log ||B||)$
- $\Rightarrow$  Cost is  $\widetilde{O}(n^5 \log^2 \|B\|)$

Improvements:

• Use floating-point GSO [NgSt05]:

 $\widetilde{O}(n^4 \log^2 \|B\|)$ 

 Recursively use approximations for B (like fast gcd) [NoStVi11]:

$$\widetilde{O}(n^5 \log \|B\|)$$

# Faster LLL-type reduction [NeSt16]

Ideas:

- Use a BKZ-like **global** strategy
- In the k-dimensional blocks, make a recursive call
- Make the blocks overlap by half only
- At the bottom of the recursion, use a quasi-linear 2-dimensional algorithm.

This is solving a local-global dilemma:

- Global sandpile flattening strategy
- Stay local, so that working dimension is small

# Faster LLL-type reduction [NeSt16]

Ideas:

- Use a BKZ-like **global** strategy
- In the k-dimensional blocks, make a recursive call
- Make the blocks overlap by half only
- At the bottom of the recursion, use a quasi-linear 2-dimensional algorithm.

This is solving a local-global dilemma:

- Global sandpile flattening strategy
- Stay local, so that working dimension is small

Analysis:

- Using Neumaier's parameter:  $O(n^2/k^2)$  tours.
- In a tour, we have O(n/k) recursive calls
- Size-reduction and GSO update after a call: O(n<sup>2</sup>k) arithmetic operations

Number of arithmetic operations (including 2-dimensional reductions):  $\widetilde{O}(n^3)$ .

Total cost:  $O(n^4 \log ||B||)$ 

Analysis:

- Using Neumaier's parameter:  $O(n^2/k^2)$  tours.
- In a tour, we have O(n/k) recursive calls
- Size-reduction and GSO update after a call: O(n<sup>2</sup>k) arithmetic operations

Number of arithmetic operations (including 2-dimensional reductions):  $\widetilde{O}(n^3)$ .

Total cost:  $\widetilde{O}(n^4 \log \|B\|)$ 

| Background on lattices | Lattice reduction framework | BKZ | LLL | Conclusion |
|------------------------|-----------------------------|-----|-----|------------|
|                        |                             |     |     |            |
| Roadmap                |                             |     |     |            |

- Background on lattices
- The lattice reduction framework
- Strong but slow: BKZ
- Solving the SIS problem
- Weak but fast: LLL

• Lattice reduction is used to solve the approximate variants of SVP/uSVP/HSVP/SIVP/...

• The process is driven by the r<sub>ii</sub>'s

 Time 2<sup>k</sup> ⇔ approx. factor γ = k<sup>O(n/k)</sup> or... approx. factor γ in time (1 + n/log γ)<sup>O(n/log γ)</sup>

- Lattice reduction is used to solve the approximate variants of SVP/uSVP/HSVP/SIVP/...
- The process is driven by the r<sub>ii</sub>'s
- Time 2<sup>k</sup> ⇔ approx. factor γ = k<sup>O(n/k)</sup> or... approx. factor γ in time (1 + n/log γ)<sup>O(n/log γ)</sup>

- Lattice reduction is used to solve the approximate variants of SVP/uSVP/HSVP/SIVP/...
- The process is driven by the r<sub>ii</sub>'s
- Time 2<sup>k</sup> ⇔ approx. factor γ = k<sup>O(n/k)</sup> or... approx. factor γ in time (1 + n/log γ)<sup>O(n/log γ)</sup>

Two approaches to flatten the sandpile.

- Global (BKZ, fast LLL):  $O(n^3 \log \log ||B||)$  iterations.
- Local (LLL):  $O(n^2 \log ||B||)$  iterations.
- Global approach seems superior
- But in practice, local remains better for LLL reduction
- And also global kicks in only if there are many iterations, whereas local may be cheaper for some instances.

Two approaches to flatten the sandpile.

- Global (BKZ, fast LLL):  $O(n^3 \log \log ||B||)$  iterations.
- Local (LLL):  $O(n^2 \log ||B||)$  iterations.
- Global approach seems superior
- But in practice, local remains better for LLL reduction
- And also global kicks in only if there are many iterations, whereas local may be cheaper for some instances.
Understand the relationship between global and local flattening

- Faster LLL-type reduction:  $\widetilde{O}(n^{\omega} \log ||B||)$ ?
- Go beyond this framework:
  - Why sticking to the input lattice?
  - Why progressive improvements?
- Find a quantum acceleration

Achieve approx. factor 
$$\gamma$$
 in time  $\left(\frac{n}{\log \gamma}\right)^{o\left(\frac{n}{\log \gamma}\right)}$ , for some  $\gamma$ .

Onderstand the relationship between global and local flattening

- If a ster LLL-type reduction:  $O(n^{\omega} \log ||B||)$ ?
- Go beyond this framework:
  - Why sticking to the input lattice?
  - Why progressive improvements?

Find a quantum acceleration

Achieve approx. factor 
$$\gamma$$
 in time  $\left(\frac{n}{\log \gamma}\right)^{o\left(\frac{n}{\log \gamma}\right)}$ , for some  $\gamma$ .

- Onderstand the relationship between global and local flattening
- Sater LLL-type reduction:  $\widetilde{O}(n^{\omega} \log ||B||)$ ?
  - Go beyond this framework:
    - Why sticking to the input lattice?
    - Why progressive improvements?
- Find a quantum acceleration

Achieve approx. factor 
$$\gamma$$
 in time  $\left(\frac{n}{\log \gamma}\right)^{o\left(\frac{n}{\log \gamma}\right)}$ , for some  $\gamma$ .

- Onderstand the relationship between global and local flattening
- Sater LLL-type reduction:  $\widetilde{O}(n^{\omega} \log ||B||)$ ?
- Go beyond this framework:
  - Why sticking to the input lattice?
  - Why progressive improvements?

Find a quantum acceleration

Achieve approx. factor 
$$\gamma$$
 in time  $\left(rac{n}{\log\gamma}
ight)^{o\left(rac{n}{\log\gamma}
ight)}$ , for some  $\gamma$ .

- Onderstand the relationship between global and local flattening
- Saster LLL-type reduction:  $\widetilde{O}(n^{\omega} \log ||B||)$ ?
- Go beyond this framework:
  - Why sticking to the input lattice?
  - Why progressive improvements?
- Find a quantum acceleration

Achieve approx. factor 
$$\gamma$$
 in time  $\left(\frac{n}{\log \gamma}\right)^{o\left(\frac{n}{\log \gamma}\right)}$ , for some  $\gamma$ .

- Onderstand the relationship between global and local flattening
- Sater LLL-type reduction:  $\widetilde{O}(n^{\omega} \log ||B||)$ ?
- Go beyond this framework:
  - Why sticking to the input lattice?
  - Why progressive improvements?
- Find a quantum acceleration

Achieve approx. factor 
$$\gamma$$
 in time  $\left(\frac{n}{\log \gamma}\right)^{o\left(\frac{n}{\log \gamma}\right)}$ , for some  $\gamma$ .